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We embark on a study of the consistent answers of queries over databases annotated with values from a
naturally ordered positive semiring. In this setting, the consistent answers of a query are defined as the
minimum of the semiring values that the query takes over all repairs of an inconsistent database. The main
focus is on self-join free conjunctive queries and key constraints, which is the most extensively studied case
of consistent query answering over standard databases. We introduce a variant of first-order logic with a
limited form of negation, define suitable semiring semantics, and then establish the main result of the paper:
the consistent query answers of a self-join free conjunctive query under key constraints are rewritable in
this logic if and only if the attack graph of the query contains no cycles. This result generalizes an analogous
result of Koutris and Wijsen for ordinary databases, but also yields new results for a multitude of semirings,
including the bag semiring, the tropical semiring, and the fuzzy semiring. Further, for the bag semiring, we
show that computing the consistent answers of any self-join free conjunctive query whose attack graph has a
strong cycle is not only NP-hard but also it is NP-hard to even approximate the consistent answers with a
constant relative approximation guarantee.
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1 Introduction and summary of results

Database repairs and the consistent answers of queries provide a principled approach to coping
with inconsistent databases, i.e., databases that violate one or more integrity constraints in a given
set 3. This area of research started with the influential work by Arenas, Bertossi, and Chomicki [3]
and since then has had a steady presence in database theory. Intuitively, a repair of an inconsistent
database D is a consistent database D’ (i.e., D’ satisfies every constraint in X) and differs from
D in a “minimal” way. By definition, the consistent answers Cons(q, 2, D) of a query g over an
inconsistent database D is the intersection of the evaluations ¢(®’) of g over all repairs D’ of D.
Thus, every set X of integrity constraints and every query q give rise to the following algorithmic
problem Cons(g, X): given a database D, compute Cons(gq, 2, D).
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Since, in general, an inconsistent database may have a multitude of different repairs, computing
the consistent answers can be an intractable problem. In fact, computing the consistent answers
can be a coNP-hard problem, even for conjunctive queries g and for key constraints. This state of
affairs motivated a series of investigations aiming to delineate the boundary between tractability
and intractability in the computation of the consistent answers. One of the most striking results
along these lines is a trichotomy theorem obtained by Koutris and Wijsen [26]. Specifically, Koutris
and Wijsen showed that for a self-join free conjunctive query g and a set X of key constraints
with one key constraint per relation of g, the problem Cons(q, 2) exhibits one of the following
three behaviours: Cons(gq, 2) is first-order rewritable, or it is polynomial-time computable but it
is not first-order rewritable, or it is coNP-complete. Extending this trichotomy theorem to more
expressive classes of queries and to richer types of integrity constraints has been the topic of active
investigations during the past several years [24, 25, 27, 28].

A different direction in database research has focused on K-databases, i.e., databases in which
the tuples in the relations are annotated with values from some fixed semiring K = (K, +, X, 0, 1).
Ordinary databases correspond to databases over the Boolean semiring B = ({0, 1}, V, A,0,1),
while bag databases correspond to databases over the semiring N = (N, +, X, 0, 1) of the non-
negative integers. The catalyst for this investigation was the paper by Green, Karvounarakis, and
Tannen [19], which developed a powerful framework for data provenance based on semirings
of polynomials. While the original framework [19] applied only to the provenance of queries
expressible in negation-free first-order logic, subsequent investigations extended the study of
provenance to richer languages, including full first-order logic [17], Datalog [12], and least fixed-
point logic [11]. Furthermore, several other topics in database theory have been examined in the
context of semiring semantics, including the conjunctive query containment problem [18, 23], the
evaluation of Datalog queries [22, 38], and the interplay between local consistency and global
consistency for relations over semirings [6].

In this paper, we embark on an investigation of the consistent answers of queries under semiring
semantics. Our main focus is on conjunctive queries with key constraints and on the rewritability of
the certain answers of such queries. The first task is to address the following conceptual questions:
How should the consistent answers of queries under semiring semantics be defined? What does
it mean to say that the consistent answers of a query under semiring semantics are rewritable in
first-order logic? To simplify the exposition, let us assume that the queries considered are closed,
i.e., they have arity zero or, equivalently, the formulas that define them have no free variables. On
ordinary databases, closed queries are called Boolean queries because they take value 0 or 1, but on
K-databases they can take any value in the universe K of the semiring K.

To define the notion of the consistent answers of a query under semiring semantics, we first need
to define the notion of a repair of a K-database with respect to a set = of key constraints, where Kis a
fixed semiring. If © is a K-database, then the support of D is the ordinary database Supp(®D) obtained
from D by setting value 1 to every tuple in one of the relations of D that has a non-zero annotation.
In Section 3, we argue that it is natural to define a repair of a K-database D to be a maximal
sub-database D’ of © whose support Supp(®D’) satisfies the key constraints at hand. Let q be a
closed query with a set X of key constraints. If D is a K-database, then on every repair ©’ of D, the
query returns a value g(D’) from the universe K of the semiring K. We define the consistent answers
mCAg (g, 2, D) of g on D to be the minimum of the values g(D’), as D’ varies over all repairs of D.
For this definition to be meaningful, we need to assume a total order on the universe K of K. Thus,
we define the consistent answers of queries for naturally ordered positive semirings, i.e., positive
semirings K in which the natural preorder of the semiring is a total order (the precise definitions
are given in the next section). The Boolean semiring, the bag semiring, the tropical semiring, and
the fuzzy semiring are some of the main examples of naturally ordered positive semirings.
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Before introducing the notion of first-order rewritability for semirings, let qpath be the closed con-
junctive query 3x3y3z (R(x;y) A S(y; z)), where the semicolon separates the key positions from
the non-key ones, i.e., the first attribute of R is the key of R and the first attribute of S is the key of
S. Let X be the set consisting of these two key constraints. Fuxman and Miller [15] showed that the
consistent answers of qpa, on ordinary databases are rewritable in first-order logic. Specifically,
they showed that for every ordinary database D,

Cons(q,2,®D) =1 ifandonlyif D E Ix3z'(R(x;z") AVz(R(x;2) — FyS(z;1))).

Thus, Cons(g, %, D) can be computed by a single evaluation of a first-order sentence on D and
without evaluating repeatedly q(D’), as D’ ranges over the potentially exponentially many repairs
of . Let K = (K, +, X, 0, 1) be a naturally ordered positive semiring. In Section 4, we show that for
every K-database D, the following holds for the consistent answers mCAx (qpath, %, D):

mCAg (qpath, D) = Z min  (R®(a,b) x min  S°(b,¢)),
D beD:R®(a,b)#0 c€D:S® (b,c)#0
where D is the active domain of D. Thus, mCAx (qpath, 2, D) can be evaluated directly on D and
without considering the repairs of D.
Motivated by the above properties of qpam, we introduce the logic Ly, which is a variant of

first-order logic with a minimization operator V and a limited form of negation (Supp) that flattens
non-zero annotations to zero. We give rigorous semantics to the formulas of the logic Lx on
every naturally ordered positive semiring and then investigate when the consistent answers of
conjunctive queries are rewritable in this logic.

Let g be a self-join free closed conjunctive query with one key constraint per relation. Our main
result asserts that the consistent answers of g are rewritable in the logic Lx if and only if the
attack graph of q is acyclic. This result generalizes an analogous result of Koutris and Wijsen [26]
for the Boolean semiring, but also yields new results for a multitude of semirings, including the
bag semiring, the tropical semiring, and the fuzzy semiring. The notion of the attack graph was
introduced by Wijsen [36, 37] and has played an important role in the study of the consistent
answers of self-join free conjunctive queries on ordinary databases. Here, we leverage the insights
obtained in this earlier study, but also obtain new insights that entail a further analysis of the
properties of the attack graph when the query is evaluated under semiring semantics. As an
illustration, it will turn out that the consistent answers mCAg (qpath, 2, D) of the query gpah on D
are definable by the Lx-formula IxVg(y,,)y. (R(x,y) X Vs(y2)2.S(y, 2)).

Let g be a fixed self-join free query with one key per relation. Koutris and Wijsen [26] showed that
if the attack graph of g contains a strong cycle, then computing the consistent answers Cons(g, %, D)
of g on ordinary databases D is a coNP-complete problem (this is a data complexity result, since g
is fixed). Note that if K is a naturally ordered positive semiring, then computing mCAg (¢, D) on
K-databases D is an optimization problem. Here, we focus on the bag semiring N = (N, +, X, 0, 1)
and show that if the attack graph of g contains a strong cycle, then computing mCAw (g, 2, D)
on bag databases D not only is a NP-hard problem but also it is NP-hard to even approximate
mCAy (g, 2, D) with a constant relative approximation guarantee. This result paves the way to
expand the study of the consistent answers of queries on annotated databases with methods and
techniques from the rich theory of approximation algorithms for optimization problems.

2 Preliminaries

Semirings. A commutative semiring is an algebraic structure K = (K, +,%,0,1) with 0 # 1 and
such that (K, +,0) and (K, X, 1) are commutative monoids, X distributes over +,and 0 Xa = ax0 =0
for every a € K. A semiring has no zero-divisors if a X b = 0 implies that a = 0 or b = 0. We say
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that K is positive if a+ b = 0 implies a = 0 and b = 0, and also K has no zero-divisors. A semiring
is naturally ordered if the canonical preorder <g, defined by a <x b & 3c (a+c¢ = b), is
a total order. Every non-empty finite set A of elements from a naturally ordered semiring has
a minimum element, denoted by min(A). Unless specified otherwise, from now on we assume
K to be a naturally ordered positive semiring. Examples of such semirings include the Boolean
semiring B = ({0, 1}, V, A, 0, 1), the bag semiring N = (N, +,-,0, 1) of the natural numbers, the
tropical semiring T = ([0, co], min, +, 00, 0), the Viterbi semiring V = ([0, 1], max, X, 0, 1), and the
fuzzy semiring F = ([0, 1], max, min, 0, 1). If K is the Boolean or the bag or the Viterbi or the fuzzy
semiring, then <y coincides with the standard order on the universe of K, while if K is the tropical
semiring, then <y is the reverse of the standard order on the universe of K.

K-relations and K-databases. A (relational) schema 7 is a finite set of relation symbols each with
a positive integer as its arity. We fix a countable set A of possible data values. An n-ary K-relation,
where n > 0, is a function R: A" — K such that R(¢) = 0 for all but finitely many n-tuples of A™.
The support of R is defined as Supp(R) = {t € A": R(t) # 0}. If R and T are K-relations of the
same arity, we write R <g T if R(d) <g T(d) for all G in the support of R. We write R C T, if
Supp(R) € Supp(T) and R(d) = T(a) for all @ in the support of R. A K-database D over a schema ¢
is a collection of K-relations, that is, a collection of functions R; : A" — K, such that the arities
of R; match that of the corresponding relation symbols in 7. We often write R® to denote the
interpretation of the relation symbol R in ®. The support of D, written Supp(D), is the database
that consists of the supports Supp(R) of the K-relations R of D. For K-databases D and D’ of the
same schema 7, we write ® <g D’ (D C D', resp.) if R® < RY (R® C RY, resp.) for every R € 7.
The active domain of the K-database D, denoted by D, is the set of all data values that occur in the
support of some K-relation of ®. In this work, we only consider K-databases with a non-empty
active domain. This means that there is at least one relation R and a tuple ¢ such that R(¢) # 0.

Conjunctive Queries. We assume familiarity with basic definitions and notions related to first-
order logic FO in the context of relational databases (e.g., see [1, 13]). We fix a countably infinite set
Var of first-order variables x, y, x1, . . ., X, etc. and write X to denote a tuple of variables. We write
var(X) to denote the set of variables that occur in ¥. An assignment on a K-database D is a total
function a: Var — D. For a variable x € Var and a value a € D, we write a(a/x) to denote the
assignment that maps x to a, and otherwise agrees with a.

A conjunctive query (CQ) is an FO-formula of the form g(¥) == 3g(R1(Z1) A ... A Rn(Z,)), where
each R;(Z;) is a relational atom and each Z; is a tuple of variables in X and ij. We assume that all
quantified variables of q occur in the quantifier-free part of the query. We say that a CQ q is closed
if g has no free variables; otherwise, we say that q is open. We write ¢ to denote the quantifier-free
part of q. We call q self-join-free (sjfCQ) if no relation symbol occurs more than once in §. If « is an
assignment, we write a(§) for the set {R(a(X)) | R(X) is a conjunct of §} of facts of § under a.

Following [19], if ¢(¥) = 3G(R1(Z1) A ... A Ri(Zr)) is a CQ, D is a K-database, and « is an
assignment on D, then, if >’ and X are the (iterated) addition and multiplication of the semiring K,
the semantics of g on D, « is the semiring value

g(D.a)= > RP(PG))x...xRL(B(Z),  where f = a(a/i).
GeDI¥!
3 Repairs and consistent answers under semiring semantics

Integrity constraints are semantic restrictions that the data of interest must obey. Integrity con-
straints on ordinary databases are typically expressed as sentences of first-order logic. In particular,
this holds true for key constraints, the most widely used integrity constraints. A key constraint
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Rewriting Consistent Answers on Annotated Data 110:5

on a relation symbol R asserts that the values of some attributes of R determine the values of all
other attributes of R. In what follows, we adopt the convention that the key attributes occupy
the leftmost positions in the relation symbol R. We will write R(X; 7) to denote that the attributes
in X form a key of R, and set key(R) := var(X). Clearly, every key constraint is expressible in
FO. For example, if we have a ternary relation symbol R(xy, x; y), then the first-order sentence
V1V YyVz(R(x1, x2, y) A R(x1, x2,2) — y = z) tells that the first two attributes of R form a key.
Let K be a semiring and let D be a K-database. What does it mean to say that D satisfies a key
constraint or, more generally, an integrity constraint ¢, where ¢ is an FO-sentence? To answer
this question, we have to give semiring semantics to FO. In the previous section, we already gave
such semantics to the fragment of FO that expresses conjunctive queries, where the addition and
the multiplication operations of K were used to interpret, respectively, existential quantification
and conjunction. This approach extends naturally to the negation-free fragment of FO, but more
care is needed to assign semiring semantics to arbitrary FO-formulas. As part of the study of
provenance in databases, Gradel and Tannen [17] gave semiring semantics to FO-formulas in
negation normal form NNF (i.e., all negation symbols are “pushed” to the atoms) by using the
notion of an interpretation, which is a function that assigns semiring values to atomic or negated
atomic facts. Here, we give semiring semantics to FO-formulas on a K-database D by, in effect,
considering a particular canonical interpretation on D; a similar approach was adopted by Barlag
et al. in [7] for K-teams, which can be viewed as K-databases over a schema with a single relation
symbol. Appendix A contains a more detailed discussion of semiring semantics via interpretations.
Let K be a semiring, © a K-database, and a: Var — D an assignment. If ¢ is an FO-formula in
negation normal form, then we define the semiring value ¢ (¥) (D, a) recursively as follows:

R(X)(D,a) = R®(a(%))

R _J1ifR(Z)(D,a) =0 . 3
“R(x)(D,a) = {0 FRE)(D.a) # 0 (x+y)(D,a) = {

(P AP(D.a) = (D) xY(Da)  (pVP)(Da) =¢(D,a)+y(D,a)
Vxp(D,) = [ | (D, a(a/x) Fxp(D,@) = ) p(D,ala/x)).

aeD aeD

1if a(%) * a(y)

where * € {=, #
0 otherwise { }

It is straightforward to prove by induction that if « and f are assignments that agree on the free
variables of an FO-formula ¢, then ¢ (D, @) = ¢ (D, ), for every K database D. Thus, from now
on, when we consider an FO-formula ¢ and an assignment «, we will assume that « is a function
defined on the free variables on ¢, hence « is a finite object. Furthermore, if ¢ is a sentence (i.e., ¢
has no free variables), then the semiring value ¢(®, @) does not depend on the assignment a. In
what follows, we write ¢ (D) to denote that value, if ¢ is an FO-sentence.

The following result is a consequence of Proposition 9 in [17].

Proros1TION 3.1. If ¢ is an FO-formula in NNF, D is a K-database, and « is an assignment, then

o(D,a) #0 ifandonlyif Supp(D),a F ¢, (1)

where the symbol |= in the right-hand side refers to satisfaction in standard (set-based) FO. In particular,
if ¢ is an FO-sentence in NNF, then ¢(®) # 0 if and only if Supp(D) k ¢.

Proposition 3.1 leads to the following natural definition for satisfaction over K-databases.

Definition 3.2. Let ¢ be an FO-formula in NNF, D a K-database, and « an assignment. We say that
D, a satisfies ¢, denoted D, a g ¢, if (D, @) # 0 (equivalently, Supp(D), a |= ¢). In particular, if
¢ is an FO-sentence in NNF, then we write ® g ¢ if (D) # 0 (equivalently, Supp(D) | ¢).

If 3 is a set of FO-sentences in NNF, we write D |=g ¥ to denote that D |=x ¢ for every ¢ € 2.
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With Definition 3.2 at hand, we are now ready to define the notion of a repair of a K-database D
with respect to a set 2 of key constraints. Here, we will assume that every key constraint is defined
by an FO-sentence in NNF in the standard way. For example, if R(x, x2;y) is a relation symbol in
which the first two attributes form a key, then the key constraint expressing this property will be
given by the FO-sentence Vuxy, x2, Y, 2(=R(x1, x2,y) V =R(x1,%2,2) V y = 2).

Recall also that if ® and D’ are two K-databases, then ®’ C D means that for every relation
symbol R, the following two properties hold: (i) Supp(R®") € Supp(R®); (i) R¥ (@) = R®(a), for
every @ € Supp(R®"). We will write D’ D to denote that D’ C D and D’ # D.

Definition 3.3. Let X be a set of key constraints, K a naturally ordered positive semiring, and D a
K-database. A K-database D’ is a repair of ® w.r.t. X if:

(1) " g 2 (which amounts to Supp(D’) [ ¢, for every ¢ € X);
(2) ©’ € D and there is no K-database ®"" such that ' ¢ ©” € D and D” g 2.

We write Rep(®D, X) for the collection of repairs of D with respect to X.

Several remarks are in order now concerning the notion of repair in Definition 3.3. First, in
the case of ordinary databases (i.e., K is the Boolean semiring B), this notion coincides with the
standard notion of a (subset) repair of an ordinary database with respect to a set of key constraints.
Second, this notion is quite robust in the sense that we get the same notion if, instead of C, we had
used the more relaxed notion <g for comparing K-databases. Finally, the notion can be extended
by considering arbitrary FO-sentences as integrity constraints. Here, we gave the definition of a
repair with respect to key constraints, since, in this paper, our entire focus is on such constraints.

Example3.4. LetN = (N, +, -, 0, 1) be the bag semiring and consider a schema consisting of a single
ternary relation R(xy, X;;y) in which the first two attributes form a key. Let D be the N-database
with Rb(a, b,c) =2, Rb(a, b,d) =3, Rb(a, a,a) = 4,and Rb(a’, b’,c’) = 0 for all other values (the
values a, b, c, d are assumed to be distinct). Then D has exactly two repairs D; and D, with respect
the key constraint of R, where the non-zero values of R are R (a,b,c) =2, RO (a, a,a) = 4, while
the non-zero values of R®2 are R®: (a,b,d) =3, R®: (a,a,a) = 4.

We are now ready to define the notion of consistent answers in the semiring setting.

Definition 3.5. Let K be a naturally ordered positive semiring, ¥ a set of key constraints, ¢ an
FO-formula, D a K-database, and « a variable assignment. The consistent answers mCAg (¢, 2, D, o)
of ¢ on D, a with respect to ¥ is defined as mingy crep(p,5) ¢(D’, @). If ¢ is an FO-sentence, then the
consistent answers of ¢ on D with respect to 3. is the value mCAx (¢, %, D) = ming crep(p,5) ¢(D’).

The consistent answers provide the tightest lower bound on the values ¢(?’, @) as D’ ranges
over all repairs of . On the Boolean semiring B, they coincide with the consistent answers.

Example 3.6. Let V = ([0,1],max, X,0,1) be the Viterbi semiring. For n > 2, let D be a V-
database with V-relations E;(x;y), for 1 < i < n, each encoding a simple directed edge-weighted
graph in which the weight of every edge is a real number in (0, 1]. The weight of an edge can be
thought of as the confidence of the edge. We define the confidence of a path along Eq, E,, ..., E, to
be the product of the confidences of its edges. Let us now consider the closed conjunctive query
qn = Ixp -+ - Ixy (E1 (x0;x1)A---AEp (xn,l;xn)) and the set X of the key constraints of E;, 1 < i < n.
Then, mCAv(gp, 2, D, a) is a number ¢ € [0, 1] that has the following two properties: (i) in every
repair of D, there is a path along Ej, E, . . ., E, of confidence at least c; (ii) there is a repair of D in

which the maximum confidence of a path along Eq, ..., E, is c.

Henceforth, we will focus on consistent answers for self-join-free CQs and key constraints.
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4 Consistent answers and query rewriting

Data complexity is one of the most useful measures in studying query answering [34]. This stems
from the observation that in practice queries are typically of small size (e.g., they are written by a
user), while databases are of large size. In data complexity, the query is fixed and only the database
is the input. Hence, each query q gives rise to a separate computational problem.

Definition 4.1. Let K be a naturally ordered positive semiring, g a CQ, and X a set of key constraints.
We define the following function problem.

ProBLEM: mCAk (g, 2)
InpPUT: A K-database D and an assignment a.
OutpuT: The value of mCAg (g, 2, D, ).

If K =B and q is a closed CQ, then mCAg(q, ) is a decision problem, which in the introduction
we denoted by Cons(g, X). We say that Cons(q, X) is FO-rewritable if there is a ¢ € FO such that
Cons(q, 2, D) = ¢’ (D), for every D. The main benefit of an FO-rewriting of mCAg (g, 2) is that
such a rewriting reduces consistent query answering to query evaluation. Thus, a database engine
developed for query evaluation can be directly used to compute the consistent answers. Note that
having a query rewriting in some logic is trivial; for instance, one may internalize the process of
checking all repairs using second-order logic. The real benefit of having an FO-rewriting is that
the evaluation of FO-formulas, with respect to data complexity, is fast and highly parallelizable. In
fact, FO-definable properties can be recognized by circuits of constant-depth and polynomial-size;
more precisely, they lie in the circuit complexity class DLOGTIME-uniform AC® [9]. Our goal is
to identify a suitable notion of FO-rewritability for mCAg (g, X), where K is a naturally ordered
positive semiring.

As a motivation, we first present an example of the rewriting of mCAg (g, X) in the semiring
context for a particular query q. In Section 4.2, we introduce the logic Lx that will be used to
express rewritings. In Section 4.3, we show that the data complexity of L lies in a semiring variant
of uniform AC°. Finally, in Section 4.4, we present our main result concerning the rewriting of
mCAx (g, ) for sjftCQs and key constraints, one key for each relation in g. In what follows, we
consider only sjfCQs and key constraints that can be read from the query; thus, we drop X from
the notation and write simply mCAg(q), mCAg(g, D, a), and Rep(D). Recall that we also drop a,
when we consider closed queries and when the proofs do no technically require an assignment.

4.1 Rewriting of the consistent answers of the path query

Recall that qpan = IxFy3z(R(x;y) A S(y;2)), for which mCAg(qpam) has the following FO-
rewriting: 3x3z"(R(x, z2") A Vz(R(x,z) — TyS(z,y))) [15]. We want to obtain a similar expression
in our setting for qpath, that is, an expression using semiring operations that provides the answer
mCAg (qpath, D) for K-databases without having to evaluate qpahm on every repair of D. We define
the expression e,q:4 (D) as follows:

eparn(®) =Y min  (Rab)x min S$(b0)), @)
D beD:R®(a,b)#0 ceD:S® (b,c)#0

where ), X, and min refer to operations of a naturally ordered positive semiring K. We call
R®(a,b) # 0 and S®(b, ¢) # 0 guards of the minimisation operators. The min-operator in (2) may
take an empty set as its range. This occurs specifically when there is no b € D such that R®(a, b) # 0.
In expressions of the above form, we adopt the convention that min(0) = 0. We claim that

mCAK(‘]path: D) = epath(g)’ 3)
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for every K-database D. Next we show that the equality holds. Note that

CA ,D) = mi D)= mi R¥ (a,b) x S¥ (b, ¢),
mCAx (qpath, D) Q/Er{{lel;l(b)qpath( ) D'Erlr‘l;&mab;‘n (a,b) (b,c)

where the former equality is the definition of mCAg and the latter follows from the semiring
semantics for CQs. To show (3), it suffices to establish that the following two statements hold:

(i) For every repair D’ of D, we have that e,u/1 (D) <x qpatn(D’);
(ii) There is a repair D* of D such that e,u/1 (D) = qpan (D*).

The first statement is proved by inspecting the expression case-by-case, while the second is
proved by constructing a suitable repair. The full proof is in Appendix B.1.

In order to construct a rewriting of mCAg (qpatn), We need a logical formula that evaluates
to eparn (D), for every K-database D. We first argue why existing rewritings for the Boolean
semiring [15, 26] do not straightforwardly extend to arbitrary naturally ordered positive semirings.
Intuitively, this is because expressions like (2) are built from sum (3), product ([]), and min. While
sum and product naturally correspond to existential and universal quantification, respectively,
standard rewritings do not provide a natural equivalent for min. In fact, min is not needed in the
Boolean semiring, since in expressions like (2), the guarded min-operator would always evaluate
to 1 provided that the guards are supported, and to 0 otherwise. Unguarded min-operators, on the
other hand, directly correspond to product on the Boolean semiring.

To formalize the preceding discussion, the first-order rewriting of Fuxman and Miller [15] and
Koutris and Wijsen [26] for mCAg(qpath), When expressed in negation normal form, is

Ix3z' (R(x,2") AVz(=R(x,2) V FyS(z,y))). (4)

Under the semiring semantics of first-order logic, this rewriting would evaluate to the expression

> (R <[] GuppR(a,0) + Y %)), (5)

aeD,beD ceD deD

where Supp(k) is a function introduced in Section 4.2 that maps any non-zero semiring value k
to 0, and 0 to 1. While this expression is correct for the Boolean semiring, as expected, it is incorrect
for other semirings, such as the bag semiring, since it uses a product of semiring values instead of
minimization. This raises the question of whether a correct rewriting is obtained by interpreting
the universal quantifier as a minimization operator. Under this interpretation, the rewriting (4)
evaluates to the expression

>, (RP(ab) xmin Supp(R®(a,0)) + )" 5°(c. D).

aeD,beD deD

To see why the latter expression is incorrect for the bag semiring, consider an N-database D with
R®(a,b) =R®(a,c) = 1 and $®(b,d) = S®(c,d) = 1. Then mCAN(qpath, ©) = 1, but the expression
evaluates to 2.

To obtain a rewriting whose semantics matches e,q:, (D), we need a logic capable of expressing
the guarded minimization operators used in (2). A rewriting in such a logic could be expressed as
follows:

IxVr(xy Y- (R(x ) X Vs(y2)2. (v, 2)), (6)

where Vg(x 4y is a sort of minimization operator that utilizes a guard. In the next section, we
introduce a logic L that supports such formulas.
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4.2 Alogic for query rewriting over K-databases

We have just exhibited an expression based on semiring operations for rewriting the consistent
answers of the path query on K-databases. Next we make this more formal, and introduce a general
notion of query rewritability for K-databases. For this purpose, we need to define a suitable logic.

As before, 7 is a relational schema and K a naturally ordered positive semiring. The syntax of
Lk is given by the following grammar:

¢ =R(X)|x=yloApleVe|Ixe]|Vxe(x)|Supp(ep),

where R € r of arity r, and ¥ = (xy,...,%,), for x1,..., X X,y € Var.

Let D be a K-database and «: Var — D an assignment. The value ¢ (D, a) of a formula ¢ € L
is defined recursively as follows. The cases for literals, Boolean connectives, and the existential
quantifier are as the semiring semantics for FO (see page 5). The semantics of the new constructs
is as follows:

1 ifp(D,a)=0

0 otherwise.

Vxp(x)(D, @) = min ¢(D, a(a/x)) Supp(¢)(D, @) = {

Over the Boolean semiring, the semantics of the minimization operator Vx coincides with the
universal quantifier and Supp(¢) corresponds to negation. In general, the Supp operator serves
as a (weak) negation operator since it flattens every non-zero annotation to return 0, thus in a
sense losing all the shades of information provided by non-zero annotations. We use the shorthand
Supp(¢) for Supp(Supp(¢)), which flattens all non-zero weights to 1.

Remark 4.1. Lp is essentially FO; furthermore, in £g, Vx is Vx and Supp(¢) is —¢.

This observation can be extended to the result that FO embeds into Lk, for every naturally
ordered positive semiring K, in the following sense. The translation between the logics is obtained
by identifying Vx with Vx and Supp(¢) with —¢.

PrOPOSITION 4.2. Let K be a naturally ordered positive semiring. For every ¢ € Lx, there exists
¥ € FO such that (D, &) # 0 if and only if Supp(D), a | ¢, for every K-database D and every
assignment a. Conversely, for every yy € FO, there exists ¢ € L such that the “if and only if” holds.
If the annotations of © are from the set {0, 1}, then ¢(D, &) # 0 if and only if D, = .

The formula Vx. ¢(x) computes the minimum value of ¢(a/x), where a ranges over the active
domain of the database. However, sometimes we want a to range over the support of some definable
predicate, that we call guard and write G. In general, the guard is an Lg-formula G(%, z), and
typically it has free variables from ¢. For this purpose, we define the following shorthand

Voz.0(7,2) = V20(3,2), where 0(7.2) = ((Supp(G(7. ) A3 93 2) Ax)V (7.2 A %) ). ()

where G, ¢ € Lx and y = Supp(3z’G(y, z’)). The idea of (7) is as follows. We first explain 6(7, z).
Informally, if the subformula 3z’G(%, z’) of y is not supported (i.e., G(4,z’) evaluates to 0 for
every z’), then 0(7, z) evaluates to 0. The more interesting case is where 3z’G(¥, z’) is supported.
In that case, 6(7, z) returns the value of ¢(7,z) if G(, z) is supported; otherwise it returns the
sum of all values ¢ (7, z’), where z’ ranges over the active domain. It is then evident that ¢ (7, z) is
minimized for a z such that G(#, z) is supported (if such a z exists).

It is now straightforward to check that the following holds:

ProrosiTION 4.3. IfG and ¢ are Li-formulas, © is a K-database, and « is an assignment, we have
that Vgx.p(x) (D, @) = mingep.g(®,a(a/x))z0 ¢ (D, ala/x)).
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Next, we define what rewritable means in our setting:

Definition 4.4. A semiring rewriting of mCAg(q) is an Lg-formula ¢, such that for every K-
database D and assignment a, we have that mCAg(q, D, a) = ¢4(D, a). We say that q is Lx-
rewritable if there exists a semiring rewriting of g.

Example 4.5. Consider qpan and the expression epq:,(®D) defined in Section 4.1. Observe that
mCAg (Qpath) is Lg-rewritable, since the Lx-formula IxVg(x, ) y. (R(x,y) X Vs(yz)2.S(y, 2)) eval-
uates to e,qsn (D), over any K-database D.

When K = B (i.e.,, over the Boolean semiring B), the guarded minimization operators in the
latter formula can be eliminated using (7), leading to a formula whose interpretation matches (5)
and thus coincides with existing rewritings [15, 26]. However, this elimination is not possible for
semirings in general.

4.3 K-circuits and complexity theory

Our goal is to use L as a logic for rewritings of mCAg (g, 2). Note that, from Proposition 4.2, it
follows directly that any general rewriting result for our logic embeds the rewriting of Koutris and
Wijsen for ordinary databases. We need to establish that Lx maintains some of the benefits of FO
mentioned in the beginning of Section 4. In particular, the data complexity of FO is in DLOGTIME-
uniform AC® (and hence in P). Arguably, a rewriting of mCAx (q) in Lx retains the conceptual
benefit of query rewriting: instead of computing answers of q for each repair, one may compute
the answers of the rewriting directly on the inconsistent database. In order to argue about the
complexity of Lk, and hence about the suitability of the logic for rewriting, we need to introduce a
generalization of AC to semirings. For this purpose, we define a variant of semi-unbounded fan-in
arithmetic AC°. We emphasize that, in general, an input to mCAg (g, ¥) is a K-database, where K
could be infinite (such as the real numbers), and hence a suitable model of computation has to be
able to deal with arithmetics over an arbitrary semiring.

Next, we give the definitions concerning circuits that are needed for our purpose. We refer the
reader to the book [35] for a thorough introduction to circuit complexity and to the book [21] for
an exposition of tropical circuits as a tool for studying discrete optimization problems via dynamic
programming. K-circuits are a model of computation for computing semiring-valued functions.

Definition 4.6. Let K be a naturally ordered positive semiring. A K-circuit with min is a finite

simple directed acyclic graph of labeled nodes, also called gates, such that

o there are gates labeled input, each of which has indegree 0,

o there are gates labeled constant, with indegree 0 and labeled with a ¢ € K|

o there are gates labeled addition, multiplication, min, and m,

e exactly one gate of outdegree 0 is additionally labeled output.
Additionally, the input gates are ordered. Note that addition, multiplication, and min gates can
have arbitrary in-degree, and the Supp-gates have in-degree 1. The depth of a circuit C is the length
of the longest path from an input gate to an output gate in C, while the size of C is the number of
gates in C.

A circuit C of this kind, with n input gates, computes the function f-: K* — K as follows: First,
the input to the circuit is placed in the input gates. Then, in each step, each gate whose predecessor
gates all have a value, computes the respective function it is labeled with, using the values of its
predecessors as inputs. The output of f¢ is then the value of the output gate after the computation.

Each K-circuit computes a function with a fixed number of arguments; for this reason, we
consider families (C,)peny of K-circuits, where each circuit C,, has exactly n input gates. A family
C = (Cn)nen of K-circuits computes the function f¢: K* — K defined as fc (%) = fo; (¥).
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Remark 4.2. A frequent requirement for considering a circuit family (C,)nen as an algorithm is
the existence of an algorithm that given n outputs the circuit C,. Circuit families for which such an
algorithm exists are called uniform. The data complexity of FO is DLOGTIME-uniform AC® [9],
and hence there is a DLOGTIME algorithm that describes C,,, given n. More formally, the algorithm
takes two numbers (i, j) as an input and outputs the type of the ith gate of C,, the index of its jth
predecessor, and, if the gate is an input gate, the index of the input string it corresponds to. See
[35] for details on circuit uniformity and [10] for uniformity in the context of real computation.

Definition 4.7. For a naturally ordered positive semiring K, let AC?{(+, X, min, m) consist of
all families (Cp,)pen of K-circuits as defined in Definition 4.6 that are of constant depth and of
polynomial size. This means that there is some constant k € N and a univariate polynomial function
f: N — N such that, for each i € N, the circuit C; is of depth k and has at most f(n) many gates. We
write AC%(+, X5, min, m) for the restriction of AC%(+, X, min, Supp) in which all multiplication

gates have in-degree 2. We write FnAC%(+, X, min, Supp) and FnAC]?{(+, X, min, Supp), for the class
of functions computed by AC%(+, X, max, Supp) and ACJ?{(+, X3, min, Supp) circuits, respectively.

Note that, for the Boolean semiring, the classes AC%(+, X, min, m) AC% (4, X2, min, m)
and AC coincide, for in this case X and min correspond to A-gates, + corresponds to V-gates, and
Supp corresponds to not-gates. Hence, by a classical result by Immerman relating FO and ACY, the
functions in DLOGTIME-uniform FnACI%g (4, X2, min, m) are precisely those that can be defined
in Lp.

The proof of the next result is in Appendix B.2.

PRrOPOSITION 4.8. For every naturally ordered positive semiring K, the data complexity of Lx is in
DLOGTIME-uniform FnAC]?{(+, X2, min, Supp).

If we can argue that functions in FnAC%(+, Xg, Min, m) are in some sense simple, we have
grounds for Lx being a “good” logic for rewritings. Consider an AC](I’{(+, X, min, Supp) circuit family
(Cy)nen with depth k and p(n) many gates, for some polynomial function p. The computation of
an AC]?{(+, X3z, min, Supp)-circuit differs from a computation of an AC%(+, X3) circuit only in the

additional minimization and Supp gates. In its computation, the circuit C, needs to evaluate at
most p(n) minimization and Supp gates. To evaluate a single minimization gate, it suffices to make
at most p(n)-many comparisons between semiring values to find the smallest input to the gate.
Similarly, to evaluate a Supp-gate, it suffices to make one a = 0-comparison for a semiring value a.

Hence, in comparison to AC%(+, X) circuits, the evaluation of a AC%(+, X, min, m) circuit needs
to make additionally polynomially many comparisons between two semiring values. Therefore,
if AC.(+, X;) is computationally favorable and size comparisons between semiring values can
be made efficiently, then we have an argument that ACY, (+, Xz, min, Supp) is computationally
favorable as well. It is easy to see that AC?K(+, X3) circuit families compute polynomial functions
of constant degree, and hence its computation is in a strong sense polynomial. Thus, functions in
FnACY, (+, X2, min, Supp) are in a strong sense polynomial.

4.4 Acyclicity of the attack graph and semiring rewriting of consistent answers

We will next establish a necessary and sufficient condition for mCAg (g, ) to be rewritable in L,
when q is a self-join free conjunctive query and ¥ is a set of key constraints, one for each relation
in g. To this effect, we consider the concepts of an attack and of an attack graph, two concepts that
were introduced by Wijsen [36, 37] and also used in [2, 26]. Our main result asserts that the attack
graph of g (see Definition 4.11) is acyclic if and only if mCAg(q, ) is Lx-rewritable.
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THEOREM 4.9. Let K be a naturally ordered positive semiring, q be a self-join free conjunctive query,
and ¥ a set of key constraints, one for each relation in q. The attack graph of q is acyclic if and only if
mCAx (g, X) is Lx-rewritable.

The proof of the theorem is divided into two parts. We first establish the easier right-to-left
direction (Proposition 4.12) before building up to prove the more involved left-to-right direction.

We write var(R;) and var(q) to denote the sets of variables that occur in R; and g, respectively.
We write g[x] to denote the CQ obtained from ¢ by removing the quantifier Jx, if there is one. If
R(¥;72) is an atom of ¢, we write ¢ \ R for the query resulting by removing that atom from g, as well
as the existential quantifiers binding the variables that appear only in the atom R(%; Z). We say that
an atom R(¥; Z) induces the functional dependency key(R) — var(R) (or var(j) — var(R)).Ifgisa
sjifCQ, we define 3(q) to be the set of functional dependencies induced by the atoms in g. Formally,

5(q) = {key(R) — var(R) | R € g

The closure of a set X of variables with respect to a set A of functional dependencies contains
all the variables y € var(q) such that A X — y. Here, A E X — y means that the set of
functional dependencies in A semantically entails the functional dependency X — y. Syntactically,
this entailment can be derived using Armstrong’s axioms for functional dependencies [5]. For
R(3;2) € q, we write (var(fj));(q\R) for the closure of var(y) with respect to 3(q \ R), that is

(var(§)3 gix) = 1x € var(q) | £(q\ R}) F var(§) — x}.

Definition 4.10. Let g be a sjfCQ. An atom R(¥; Z) of q attacks a variable x bound in q if there
exists a non-empty sequence of variables xy, . .., x, bound in ¢, such that:

(1) x; € var(Z) (i.e., is a non-key variable of R), and x,, = x;

(2) for every i < n, we have that x;, x;4+; occur together in some atom of g; and

(3) for every i < n, we have that x; ¢ (var(ﬁ));(q\R).

A variable x in q is unattacked in q if no atom of q attacks it.

Definition 4.11 (Attack graph). The attack graph of q is the graph defined as follows: (i) the
vertices are the atoms of g; (ii) there is a directed edge from R(#; Z) to a different atom R'(gj’; Z)if
R(; %) attacks a variable in var(y’), i.e., if R(7j; Z) attacks a key variable of R’ that is bound in g.

Our definition of an attack graph is phrased slightly differently but remains equivalent to the
definitions found in [2, 26]. Specifically, note that if an atom attacks a bound variable in some other
atom R, then it necessarily also attacks a bound variable that occurs in key(R).

The next proposition establishes the right-to-left direction of Theorem 4.9.

ProposITION 4.12. Let K be a naturally ordered positive semiring, q be a self-join free conjunctive
query, and 3. a set of key constraints, one for each relation in q. f mCAg(q, ) is Lx-rewritable, then
the attack graph of q is acyclic.

PrOOF. Assume that ¢ is Lx-rewriting of mCAx (g, 2). Let ¢ be the corresponding FO-formula
obtained from Proposition 4.2. It is easy to see that i is an FO-rewriting of CoNs(q, ) on ordinary
databases. From the results in [26], it follows that the attack graph of q is acyclic. O

Towards proving the converse direction of Theorem 4.9, we start with the next lemma, whose
proof can be found in Appendix B.3:

LEmMA 4.13. Ifq is a sjifCQ with an acyclic attack graph and x is an unattacked variable, then q[x]
has an acyclic attack graph. Moreover, the attack graph of q[x] is a subgraph of the attack graph of q.
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LEMMA 4.14. Let q be a sjfCQ and 3. be a set of key constraints, one key per relation. Let D be a
K-database and y an assignment such that ®',y g q for every repair ®" of © (with respect to %),
and let x be an unattacked variable that is bound in q. Then, there is an element ¢ € D such that

D', y(c/x) Ex qlx], for every repair ®’ of D.

Proor. Let D and y be as described in the statement of the lemma. For every repair D’ of D,
let p(®’) = {c € D | @, y(c/x) Ex qlx]}. This set is always nonempty, since by assumption,
D',y [k q for every repair D’ of D. We will prove the following stronger formulation of the lemma:

Claim 1. There is a repair R* of D such that p(R*) = (' repairop» P(D) # 0.

Let R* be a repair of D for which p(R*) is minimal according to subset inclusion. We will show
that p(R*) € p(S), for every repair S of D. To this end, fix an arbitrary repair S of D, and let
R be a repair such that p(R) = p(R*) and, in addition, there is no other repair T of D such that
p(R*) = p(T) and TN S 2 RN S. We will show that p(R) C p(S). Take a € p(R). We want to
show that a € p(&). Towards a contradiction, assume a ¢ p(S). Hence, R, y(a/x) Fx q[x] and
S, y(a/x) Fx q[x]. Let a be a valuation such that R, « |Fx ¢ and agrees with y(a/x) with respect
to the free variables of g[x]. Thus, there is a fact A € a(§) suchthat A € Rand A ¢ S. Since S is a
repair of D it contains a fact A’ that is key-equal to A. Now, consider R = (R \ {A}) U {A’}. Note
that, R’ is a repair of D, for we are considering only key constraints with one key per relation and
sjfCQs. Since R’ N S 2 R N S, it follows from the choice of R that p(R’) # p(R). We will show
the following claim, which will then lead to a contradiction.

Claim 2. p(R’) € p(R)

Proor. Since p(R’) # p(R), we only need to show containment. Pick an arbitrary b € p(R’),
and notice that R’, y(b/x) Ex q[x]. Let § be a valuation such that R’, § Ex § and agrees with
y(b/x) with respect to the free variables of g[x]. The claim follows if R, § Fx ¢[x], and thus
assume R’, B [k q[x]. Since R and R’ contain the same facts with the exception of A and A’, then
necessarily A’ € f(§). Let R(¥; Z) be the atom in g with the same relation name as A and A’, and
let § be the valuation for the variables in ¢ defined as follows:

5(0) a(v) if R(y;Z) attacks v in g
) =
B(v) otherwise

Since x is unattacked, it is not attacked by R, and thus §(x) = f(x) = b. Hence, to prove that
b € p(M) it suffices to show that R, § |=x §. Recall that A and A" are key-equal facts of relation
name R such that A € «(§) and A’ € (§). Hence a(y) = (i) for the key variables i of R.

Let (g \ R), and let (var(y))g(q\m. Notice that, if we define

Yy = var(y)
Vi1 = {w € Var | thereis (V —» W) € X(¢ \ R) suchthat V C Y, and w € W}

then (var(fj));(q\R) =, Yn

Clearly, var(ij) C (var(ﬁ));(q\R). We now show that & and f§ agree on all variables in (var(ﬁ));(q\m.
More precisely, we show that a(w) = f(w) for every w € (var(fj))g(q\m =, Y, by induction on
n. For Yy this follows, for we already established that a(3j) = f(7j) for the key variables of R. Now
assume a(Y,) = f(Y,), we want to show that a(Y,+1) = f(Y41). Let w € Y41 \ Yy, then there is a
functional dependency V.— W € %(q \ R) such that V C Y,, and w € W. This dependency is of
the form i — 2’ for some atom S(y’;z’) # R(#j; Z), where y’ C V C Y, and 2 C W. By inductive
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hypothesis, a(y_” ) = B(y’). Furthermore, R and R’ agree on every atom with the exception of A
and A’ which are the facts corresponding to the relation R, thus R and R’ agree on S (g;’; ') and
this shows that « and f agree on all variables in Y,,. It follows by the induction principle that
and f agree on all variables in (var(fj))g(q\m.

Notice now that for every non-key variable z of R, if z ¢ (var(ﬁ))g @\R) then R(¥; Z) attacks z, since
in that case the sequence of length one consisting only of z witnesses the attack, and consequently
d(z) = a(z). Furthermore, since a and f§ agree on variables in (var(g))g(q\R), d maps the atom
R(§; Z) to the fact R(a(4); a(Z)) = A, which belongs to R.

Let S(1’;z') be an arbitrary atom of g \ R. Since R, & =x § and R, § [=x § there are facts B € R
and B’ € R’ such that & and  map S(y/'; z') to Band B, respectively. Since R and R’ contain the
same facts with the exception of A and A’, we have that B, B’ € R. Hence, it suffices to show that §
maps S(g’; Z') to either B or B'.

If all variables in S (gj’ 4 ) are attacked (not attacked, resp.) by R(y;Z) then, by definition, §
coincides with & (f, resp.) with respect to the variables in S and hence maps S(y'; z’) to B (B, resp.).

If we are not in the above case there are both variables that are attacked and not attacked by
R(¥; 7). Let x; and x; be arbitrary variables that occur in S(_J’ :2’) such that R (7; Z) attacks x; but
does not attack x;. Towards a contradiction suppose x; ¢ (var(ﬁ))‘zL @\R)" Since R attacks x;, there
is a sequence vy, . . ., v of variables starting in a non-key variable of R and ending in x; witnessing
the attack (see Definition 4.10). In particular is vx = x;. Since x; and x; belong to the same atom
Sin g and x; ¢ (var(g_j));(q\R), we can extend the sequence by setting vi,; = x; thus obtaining a
witness for the attack from R to x,, which results in a contradiction since x; is not attacked by our
assumption. Hence, x; € (var(fj))g(q\m and thus a(xz) = f(x2) = 6(xz). Also, 5(x1) = a(xy) by
construction of 8. Since, x; and x; were arbitrary, § maps S (gj’ ; 2z ) to B, which is in R.

We have shown that § maps S (J’; % ) to either B or B’, and hence to a fact in R. Therefore, § maps
every atom in q to a fact in R and thus R, § =k ¢, which then finishes the proof of Claim 2. O

Since we assumed that R is a repair of © such that p(R) is subset-minimal, Claim 1 now follows
by a contradiction given by Claim 2, which concludes the proof of the lemma. O

The proof of the following lemma can be found in Appendix B.3.

LEmMA 4.15. Let q be a sifCQ and X a set of key constraints, one per relation, with an acyclic attack
graph. Let & : Var — A be an assignment and x be an unattacked variable in q. Then, for every

K-database D,

mCAx (g, D, a) = Z mCAx (q[x], D, a(c/x)).
ceD

We are now ready to give the proof of our main result.

THEOREM 4.9. Let K be a naturally ordered positive semiring, q be a self-join free conjunctive query,
and ¥ a set of key constraints, one for each relation in q. The attack graph of q is acyclic if and only if
mCAx (q, 2) is Lx-rewritable.

Proor. The right-to-left direction follows from Proposition 4.12. We prove the left-to-right
direction by induction on |q|. We will simultaneously define the rewriting and prove its correctness.
We first prove the correctness of the rewriting for K-databases D and assignments « such that
D', a Ex g, for every repair D’ of D, then at the end of the proof argue that the rewriting is
correct also for the remaining case. Let q be a self-join-free conjunctive query whose attack graph
is acyclic. For the base case, assume |q| = 1, that is, ¢ = 3XR(¥; Z) where ¥ C §UZ. Since q is acyclic,
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there exists an unattacked atom in ¢, which in this case is R(7j; Z). Set §z (resp. zZz) to be the list
of variables that are in  (resp. in Z) and X. By Lemma 4.15, we get

mCAx(qD,@) = > mCAx(qliz], D, ), where a’ = a(d/iz) -
GeDlUz!
By definition of mCA and since there is exactly one key-equal fact to R(«’(%); Z) in every repair
D of D,

mCAg(q[7z], D, o) = qliz1(¥, )= min R(B@): p(Z).  (7)
v cRep(03) beDP=\:R (B(§);B(2))#0

where f§ = a’(l; /Zz). This yields the following Lx-rewriting ¢, for the base case:

@q = ﬂngR(g;g)E}.R(g; 2Z).
If there is a repair D’ of D for which ®’, a £k ¢, since the semiring is positive, the last minimiza-
tion in (7) is over the empty set for every a € D% thus 0q(D,a) = 0 = mCA;(q, D, a). For the
inductive step, suppose that |q| = n > 1, and that the claim holds for every acyclic sjfCQ of size
at most n — 1. Let R(¥; Z) be an unattacked atom in g, which exists since q is acyclic. As done in

the base case, we define 7z and Zz, we use Lemma 4.15, and focus on rewriting the expression
mCAK(q[f],—g], D, a’), where o’ = a(d/yz). We want to show that:

’ _ . D . o ,
et () I = DR (B p(2) 0 (REB@:pE >, Hopoz) 1 a®.p)
= min (R®(B(7): B(2)) x mCAx (3. D, B)) (®)

 beDFELRD (A5 () %0
where ¢ = q[yz][Zz] \ R(¥;Z), and f =« (b/zx) It is easy to see that:

min =](D,a) > min R® :B(Z))x min (D, B)).
podin Bz min(EG@HE) X min )
To show the other direction, assume that mCAg (g[7z], D, @’) > 0, and let Dy, be a repair such
that q[7z] (@mm, @) is minimum over all repairs of . We will prove that, for every repair D* of

D and for every b € DI such that R2(B(#); B(Z)) # 0:

ql7z] (Dumin, @) < R (B(@); (2)) X 4(D", ). ©)

It follows, as in the proof of Lemma 4.15, that q[§z](Dmin, ') <x q[7z] (D%, a’). Since there
is exactly one key-equal fact (with a non-zero annotation) with relation name R per repair, in
particular in D, the latter can be rewritten as R® (8(7); (Z)) x q(D*, f). This proves (9), which
then gives us the desired expression for mCAg (q[yz], D, a’).

On the other hand, since |q] < n, it follows from the induction hypothesis that mCAx (g, )
admits an Lg-rewriting ¢z, hence we obtain the following Lx-rewriting for mCAg (g, %):

®q = Yz Vr(jz) %205
If there exists a repair D’ such that ®’,a [tx ¢, then mCA(g, D, @) = 0. From this and the
hypothesis that the semiring K is positive, it follows that when we inspect (8) for every d € D!¥%,
either the set {I; e D% RP(B(Z), B(Z)) # 0} is empty and thus the minimization is done over an
empty set, or the minimization of g(R, &) over all repairs R is 0, hence ¢4 (D, @) = 0. This completes
the proof of the theorem. O

The preceding theorem generalizes the Koutris-Wijsen rewritability result in [26]. Furthermore,
it gives new rewritability results for the bag, the tropical, the Viterbi, and the fuzzy semiring.
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5 From rewritability to non-approximability

Since the early days of computational complexity, there has been an extensive study of the approxi-
mation properties of optimization problems, i.e., whether or not there are “good” algorithms that
approximate the optimum (maximum or minimum) value of some objective function defined on
a space of feasible solutions. Most of the work on the approximation properties of optimization
problems has focused on optimization problems whose underlying decision problem is NP-complete.
This study has shown that such optimization problems may have very different approximation prop-
erties, ranging from polynomial-time approximation schemes (e.g., KNAPsSACK) to polynomial-time
constant-approximation algorithms (e.g., MIN VERTEX COVER) to polynomial-time logarithmic-
approximation algorithms (e.g., MIN SET COVER), or even worse approximation properties (e.g., MAX
CLIQUE) - see [16, 32]. There has also been work on the approximation properties of optimization
problems whose underlying decision problem is in some lower complexity class, such as L and NL,
where L and NL denote, respectively, deterministic log-space and non-deterministic log-space [33].

Let K = (K, +, X, 0, 1) be a naturally ordered positive semiring. Every closed query g and every
set 3 of constraints give rise to the optimization problem mCAg(q,2): given a K-database D,
compute mCAg (g, 2, D). The decision problem underlying mCAg (g, X) asks: given a K-database
D and an element k € K, is mCAg (g, 2, D) <g k? In the case of the Boolean semiring B, both the
optimization problem mCAg (g, X) and its underlying decision problem coincide with the decision
problem Cons(g, 2). Furthermore, as mentioned earlier, it has been shown in [26, 29] that if g is a
self-join free conjunctive query with one key constraint per relation, then Cons(q, X) exhibits a
trichotomy, which we now spell out in detail: (i) if the attack graph of g is acyclic, then Cons(g, £) is
FO-rewritable; (ii) if the attack graph of g contains a weak cycle but no strong cycle, then Cons(g, %)
is L-complete, hence it is in P but it is not FO-rewritable; (iii) if the attack graph of ¢ contains a
strong cycle, then Cons(g, 2) is coNP-complete (the precise definitions of a weak cycle and of a
strong cycle in the attack graph can be found in [26]).

Let g be a closed self-join free conjunctive query and let X be a set of key constraints, one for
each relation of q. In what follows, we will leverage the above trichotomy result for Cons(g, X)
to study the approximation properties of computing mCAy(g, 2), where N = (N, +, X, 0, 1) is the
bag semiring. Let ¢ > 1 be a fixed constant and consider a minimization problem Q in which the
objective function takes positive integers as values. An e-approximation algorithm for Q is an
algorithm that, given an input to Q, returns the value A of the objective function on some feasible
solution so that A/opt < ¢, where opt is the value of the objective function on the given input
(note that A/opt > 1 because Q is a minimization problem). Since mCAy(g, 2) may take the value
0 on an input N-database D, we will consider the minimization problem: given an N-database D,
compute mCAx(g, 2, D) + 1.

Assume that q is a closed self-join free conjunctive query and X is a set of key constraints, one
for each relation of q. For every ¢ > 1, let APPROX(q, £, ¢) be the following function problem:

PROBLEM APPROX(q, %, ¢)
INPUT: An arbitrary N-database D.
OUTPUT: The value q(®’) of q on some repair D’ of D such that g(D’)/opt < ¢, where opt =
mCAn(gq, 2, D) + 1.
Clearly, the inequality gq(®’)/opt < ¢ encapsulates a relative approximation guarantee. For
example, if we take ¢ = 1.5, then APPROX(g, 2, 1.5) asks for the value g(D’) of ¢ on some repair
D’ of D such that ¢(D’) < 1.5 (mCAxn(q, 2, D) + 1).

PrROPOSITION 5.1. Let q be a closed self-join-free conjunctive query and let ¥ be a set of key
constraints, one for each relation of q. For every ¢ > 1, there is a first-order reduction from the
complement of Cons(q, %) to APPROX(g, Z, ¢).
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Proor. Fix ¢, 3, and ¢ > 1, as in the hypothesis of this proposition. Let M be a fixed natural
number such that M > ¢ and pick a relation symbol R occurring in g.

Given a standard database D, (i.e., a B-database) that is an input to Cons(gq, X), we construct an
N-database D as follows:

e Annotate every R-fact of Dy with M, that is, if ¢ € Supp(RDO), then RD(t) = M; otherwise
R2(t) = 0.
e Annotate all other facts in Dy with 1, that is, for every relation symbol S in g that is different
from R, if s € Supp(S®), then S®(s) = 1; otherwise S®(s) = 0.
Since M is fixed, the N-database © can be constructed from ®y in first-order logic. Furthermore, it
is clear that there is a one-to-one correspondence between the repairs of D, and the repairs of D.
We now claim that Cons(g, 2, D) is false if and only if APPROX(q, Z, ¢) returns 0 = g(D’) for
some repair D’ of D, where, of course, the evaluation of g(D’) is over the bag semiring N.
Assume first that Cons(g, %, Do) is false, which means that there is a repair D of Dy that falsifies
q. It is easily verified that there is a (unique) repair D* of D such that Supp(D*) = D;. Furthermore,
q(D*) = 0, hence mCAy (g, X, D) = 0 and opt = 1. Now take any repair D’ of D such that g(D’) # 0.
By our construction, ¢(®’) = M > ¢, hence q(D’)/opt = M > &, which implies that g(D’) # 0 is
not a valid output for APPROX(q, Z, ¢). It follows that APPROX(qg, Z, ¢) must return 0 = g(D’) for
some repair D’ of D.
Conversely, assume that APPROX(g, %, ¢) returns 0 = q(D’) for some repair D" of D. By our
construction, it must be the case that Supp(®’) is a repair of Dy that falsifies g, hence Cons(g, =, D)
is false. This concludes the proof of Proposition 5.1. O

COROLLARY 5.2. Let q be a closed self-join-free conjunctive query and let 3. be a set of key constraints,
one for each relation of q. Then the following statements are true.

e If the attack graph of q contains a (weak or strong) cycle, then for every ¢ > 1, the problem
APPROX(q, 2, €) is L-hard under first-order reductions; and

o ifthe attack graph of q contains a strong cycle, then for every e > 1, the problem APPROX(q, Z, ¢)
is NP-hard under first-order reductions.

ProoF. As discussed earlier, it is shown in [26] that the complement of CoNs(g, ) is L-hard if
the attack graph of g contains a cycle, and NP-hard if the attack graph of g contains a strong cycle.
The desired conclusions then follow from Proposition 5.1. O

We illustrate Corollary 5.2 with two examples.

e Let qcycle be the query IxJy(R(x; y) A S(y; x)). It is known that the attack graph of qcycle con-
tains a weak cycle but not a strong cycle. Thus, for every € > 1, we have that APPROX(qcycle, Z, €)
is L-hard under first-order reductions.

o Let qgink be the query Ix3y3Iz(R(x; z) AS(y; z)). It is known that the attack graph of ggink con-
tains a strong cycle. Thus, for every p > 1 and every o > 0, we have that APPROX(qsink, 2, €)
is NP-hard under first-order reductions.

6 Directions for Future Research

In this paper, we initiated a study of consistent query answering for databases over a naturally
ordered positive semiring. The results obtained suggest several research directions in this area.
First, an interesting open question is to extend our complexity study of mCAg(q,X) from
rewritability in L to computability in polynomial time. Consider a self-join free conjunctive
query whose attack graph contains a weak cycle, but not a strong cycle. In the case of standard
databases, it was shown in [26] that the consistent answers of such queries are polynomial-time
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computable, but not FO-rewritable. Does this result extend and how does it extend to the consistent
answers of such queries for K-databases, where K is a naturally ordered positive semiring? Here,
among others, we have the problem of how to formulate the “right” notion of polynomial-time
computability over semirings. For standard databases, two polynomial-time approaches are known
for computing consistent answers to self-join-free conjunctive queries with a cyclic attack graph
that has no strong cycles: through a rewriting in a variant of Datalog [29], or via a more general
algorithm developed by Figueira et al. [14], which can be formulated in some fixpoint logic. It is an
open question whether these approaches can be adapted beyond the Boolean semiring to arbitrary
naturally ordered positive semirings. In this respect, it is also significant that the algorithm of
Figueira et al. is not restricted to the self-join-free case but can also handle some, though not all,
conjunctive queries with self-joins. Their algorithm could provide a pathway for extending the
results in the current paper to conjunctive queries with self-joins. Nevertheless, one should be
aware that consistent query answering to conjunctive queries with self-joins is a notorious open
problem. For example, for conjunctive queries g with self-joins and primary keys X, the complexity
of mCAg (g, X) is understood for queries with at most two atoms [31], but is largely open for queries
with three or more atoms.

Second, we initiated an investigation into approximating consistent query answers when the
computation of exact results is intractable. In particular, we showed that if q is a self-join free
conjunctive query whose attack graph contains a strong cycle, then the consistent answers on bag
databases (i.e., mCAx(g, )) are not approximable in polynomial time, unless P = NP. How does
this result extend to naturally ordered positive semirings other than the bag semiring?

Third, in a recent paper [2], consistent query answering is studied for primary keys and numerical
queries that return a single number obtained by aggregating (e.g., by means of SUM or AVG) the
results returned by a self-join-free conjunctive query q(r), where the free variable r is numerical
and ranges over N. The range semantics established in [4] requires computing the greatest lower
bound (glb) and the least upper bound (lub) on the answers to the numerical query over all repairs.
The problem of finding the glb for SUM queries can be restated as a special case of mCAy (g, 2). The
authors of [2] study rewritings in aggregate logic, which is different from the logic Ly in the current
paper, and obtain a dichotomy similar to our Theorem 4.9. While their rewriting adresses a special
case of mCAy (g, X), the two approaches differ significantly in their formalism and underlying
syntax. A deeper theoretical exploration is required to precisely pinpoint the differences and
commonalities between the two approaches.

Finally, it is also natural to introduce least-upper-bound semantics in the context of semirings.
Specifically, the possible answers MCAx (¢, 2, D, @) of ¢ on D, a with respect to ¥ is defined as
maxyy crep(D,5) ¢ (D', @). Thus, the possible answers provide the tightest upper bound on the values
(D', a) as D’ ranges over all repairs of D.
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A Semiring semantics via interpretations

In this appendix, we give some background on semiring semantics via interpretations and provide
further justification for the definition of repairs given in our paper, i.e, why it is reasonable to
define repairs using flattening, as done in Section 3. The main references are two papers by Gréadel
and Tannen [17] and [20] in which semiring semantics to first-order logic FO is given using the
notion of an interpretation. We first recall the basic definitions from these two papers.

In what follows, we assume that K = (K, +, X, 0, 1) is a positive semiring and 7 = (Ry, ..., Rp) is
a relational schema.

Let D be a finite set and let Litp be the set of all atomic and negated atomic facts involving
elements of D, i.e., all expressions of the form R;(a) and —R;(a), where a is a tuple of elements from
D. We will refer to such expressions as literals from D.

e An interpretation on D is a function 7 : Litp — K.

o An interpretation r is model defining if for every atomic fact R;(a), exactly one of the values
m(R;(a)) and 7(—R;(a)) is different from 0.

e Every model-defining interpretation 7 on D determines a unique finite structure D, =
(D, Rll)”, e, Rﬁ”) with universe D, where for every i and for every tuple a from D, we have
thata € R?” if and only if 7(R;(a)) # 0.

Let 7 be an interpretation on D. To every FO-formula ¢(x1, .. ., X,) in negation normal form (NNF)

and every tuple (as, . . ., a,) from D, Griddel and Tannen [17, 20] assign a value (¢ (x1/a1, . . ., xXn/an))
in K. The definition extends the values of the interpretation sz by induction on the construction of
FO-formulas; in this definition, the addition + operation of K is used to define the semantics of
Vv and 3, while the multiplication X operation of K is used to define the semantics of A and V. In

particular, for every FO-sentence i in NNF, the interpretation assigns a semiring value 7 (i) to .
The following proposition (Proposition 5 in [20]) will be useful in the sequel.

ProprosSITION A.1. Let & be a model-defining interpretation on D. Then for every FO-sentence i/ in
NNF, we have that

n(y) #0 ifandonlyif D, .

Note that D, is an ordinary finite structure. Gridel and Tannen [17, 20] do not give semantics of
FO on K structures, i.e., on finite structures of the form D = (D, R, .. .,Rﬁ), where each Rlp isa
function from D" to K and r; is the arity of the relation symbol R;. In particular, they never define
what it means for a K-structure D or for a K-database D to satisfy a FO-sentence ¢. Yet, we need
such a definition in order to define the notion of a repair of a K-database with respect to a set of
integrity constraints.

Definition A.2. Let D = (D, RP ..., Rﬁ) be a finite K-structure.

e We say that an interpretation 7 on D is compatible with D if 7 is model-defining and for
every i and every tuple a from D, we have that 7(R;(a)) = RP(a).
e The canonical compatible interpretation with D is the interpretation zp such that for every i

and every tuple D from D, we have that 7(R;(a)) = R? and
0, ifRP(a) #0

—|R = L
7(=Ri(a) {1, R (@) 0

Note that if 7 is an interpretation that is compatible with a K-structure D, then, by definition, =
has to agree with each relation RP on the atomic facts R;(a). For the negated atomic facts —R;(a),
we have that 7(=R;(a)) = 0 if R?(a) # 0, because 7 is model defining. If, however, R?(a) =0, then
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7(—R;(a)) can be any non-zero value from K; in the case of the canonical compatible interpretation
7p, we have that this non-zero value is 1.

Let D be a K-structure and consider the canonical compatible interpretation zp. As discussed
above this gives rise to an ordinary structure D, with universe D. From the definitions, it follows
that D, = Supp(D), where Supp(D) = (D, Supp(RP), ...,Supp(RD)) is the ordinary structure
with universe D and relations the supports of the relations of D.

ProprosITION A.3. Let D be a K-structure and let  be a FO-sentence. Then the following hold:

e If my and m, are two interpretations on D that are compatible with D, then 71(y) # 0 if and
only if mo () # 0.

e Forevery interpretation i on D that is compatible with D, the following statements are equivalent:

(1) n(y) #0;

(2) m () # 0;

(3) Supp(D) [ .

Proor. The first part of the proposition is proved using a straightforward induction and the
definition of compatibility. The second part of the proposition follows from the first part of the
proposition together with Proposition A.1, and the earlier fact that D, = Supp(D). O

The preceding proposition motivates the following definition of what it means for a K-structure
to “satisfy” a FO-sentence.

Definition A.4. We say that a K-structure D satisfies a FO-sentence ¢ in NNF, denoted D |=x ¥,
if for some (equivalently, for all) interpretation s that is compatible with D, we have that (i) # 0.

By Proposition A.3, we have that D =g ¢ if and only if Supp(A) | ¢.
Let us now turn to K-databases. Every K-database D with K-relations Rlb, .. ,R,?l can be viewed

as a finite K-structure D with universe the active domain D of D and with the same relations
as those of D, i.e., D = (D, R® .. .,R,?l). It is now clear that the semiring semantics of FO on a
K-database D that we gave in Section 3 coincides with the definition of the semantics of FO derived
by using the canonical compatible interpretation 75 In particular, Proposition 3.1 is a special case
of the above Proposition A.3. Furthermore, in defining what it means for a K-database D to satisfy
a FO-sentence 1/, we could have used any interpretation xz on D that is compatible with D, instead
of the canonical compatible one. And this amounts to Supp(®D) satisfying ¥ in the standard sense.

In summary, the preceding considerations justify using “flattening” to define the notion of a
repair of a K-database with respect to a set of key constraints and, more broadly, with respect to a
set of FO-sentences.

B Proofs omitted from the main body
B.1 Rewritability of the consistent answers of the path query

Recall that qpa = IxIy3z(R(x;y) A S(y;2)), for which mCAg(qpam) is in P [15], and has the
following first-order rewriting: 3x3z’(R(x,z’) A Vz(R(x,z) — Jy(S(z,y)))). We would like to
obtain a similar expression in our setting for qpar, that is, an expression utilising semiring operations
that provides the answer mCAg (qpath, D) for K-databases without having to evaluate qpatn on every
repair of D. The semiring semantics of FO on a K-database D we gave in Section 3 are precisely
the semiring semantics of FO using the canonical interpretation We define the expression e,q:, (D)
as follows:

e D) = min R® a,b) x min s b,c)),
path(D) ;beD:RD(a,b);tO( (ab) ceD:SD (be)#0 (5.))
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where 3, X, and min refer to operations of a naturally ordered positive semiring K. We claim that

mCAK(qpatha D) = epath(b) (10)

for every K-database D.
Proor. We show that the equality holds. Note that

CA ;D)= mi D)= mi R® (a,b) x S (b, ¢),
mCAg (qpath, D) :D,ggérfl(b)qpath( ) D,Er}r{l;}g(ma[;u (a,b) (b,c)

where the former equality is the definition of mCAg and the latter follows from the semiring
semantics for CQs. To show (10), it suffices to establish that the following two statements hold:

(i) For every repair D’ of D, we have that e,u, (D) <x qpatn(D’);
(ii) There is a repair D" of D such that e,q:1(D) = q(D”).

For (i), let ®’ € Rep(D) and a, b,c € D’ be arbitrary, and consider the expression R® (a, b) x
S?' (b, ¢). We distinguish the following three cases:

Case 1: a is not a key value for R®.

Case 2: a is a key value for R®, but b is not a key value for S®.

Case 3. a is a key value for R® and b is a key value for 5.

Note that, in the sum defining e, (D), the element a contributes only one summand to that
sum. In Case 1, in which a is not a key value for R®, the summand to which a contributes has
value 0, since we set min(@) = 0. Similarly, in Case 2, in which a is a key value for R® but b is not
a key value for S®, the factor min, D:5® (b,2)#£0 S®(b, z) to which b contributes takes value 0, and
hence the summand to which a contributes takes value 0. In Case 3, in which a is a key value for
R® and b is a key value for S, by monotonicity of multiplication (if j* <g j then i X j* <g i X j)
we have

min  (RP(ay)x min  S®(y,2)) <g R® (a,b) x S¥(b,¢).
yeD:R® (a,y)#0 2eD:S® (y,z)#0
Therefore, the summand of e,q:,(®D) to which a contributes is dominated by the summand of
Qpath (D’) to which a contributes. Hence epq:1(D) <x qpath(D’), which concludes the proof of (i).
For (ii), we distinguish two cases: D g Qpah or D Fr Qpath- If D Fx qpath, then for every
repair D’ of D, we have that D’ }£x qpamh, Hence, qpan (D) = 0, for every repair D" of D. Now, an
inspection for e,q:,(®) shows that e, (D) = 0. Therefore, we can pick any repair D" of D (at
least one repair exists) and conclude that e,q: (D) = 0 = qpamn (D).
Finally, suppose that D [y qpam. Our goal is to show that there exists a repair D* of D such
that e,q4 (D) = q(D*). We build a repair D* as follows. For every element b that is a key value for
S®, we choose a value ¢* such that S®(b, ¢*) = min{S®(b,c) | S®(b,¢) # 0,c € D}. Now, for every
element a that is a key value for R®, we have two possibilities:
(i) There exists a b such that R®(a, b) # 0, and S® (b, ¢) = 0 for every ¢ € D (i.e., b is not a key
value for $?). In this case, we pick one such b and put (a, b) in R?".

(i) For every b such that R®(a, b) # 0, there exists a value ¢ for which S® (b, ¢) # 0. In this case,
we choose an element b* with R® (a, b*) # 0 and such that the value R® (a, b*) x S®(b*, ¢*) is
minimised, and we put (a, b*) in RY",

Let a be a key value for R® for which the first possibility holds. If b is the element for which
Rg*(a, b) is a fact of D*, then min{SD(b, c): Sb(b, ¢) # 0,c € D} = 0. Consequently, we have that

min (R®(a, y) X min SD(y, z)) =0.
yeD:R® (a,y)#0 2eD:S® (y,z)#0
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Moreover, RY (a,b) x Y (b,c) = 0, for any ¢ € D*. Thus, the value of the summand in epq:, (D)
contributed by a equals the value of the summand in qpan (D*) contributed by a.

Let a be a key value such that the second possibility holds. From the definition of D*, it follows
that the expression min e p.go (g y)20 (R®(a,y) x MiN, ¢ .60 (4,2)0 S®(y,z)) in epath (D) is equal to
the value in qpam (D) contributed by a.

By combining the findings in these two possibilities, we conclude that eyq:4 (D) = qpatn (D). O

B.2 K-circuits and complexity theory

ProposITION 4.8. For every naturally ordered positive semiring K, the data complexity of Lx is in
DLOGTIME-uniform FnACY, (+, Xz, min, Supp).

Proor. The proof proceeds analogously to the classical case proving that FO is in DLOGTIME-
uniform AC’. When considered as inputs to circuits, K-databases are encoded as strings of semiring
values in the same fashion as Boolean databases are encoded as strings of Booleans (see, e.g., [30]).
The inputs that we consider also include an assignment « giving values for some fixed finite set
X of variables. If R® is a K-relation of arity k in D, then its encoding enc(R®, @) is simply the
concatenation of the semiring values R® (a(d)), for @ € (D U X)X, written in some predefined
order (that is we stipulate some ordering on D U X and use that to define an ordering of (D U X ) ).
The encoding enc(D, a) of the K-database and an assignment is then the concatenation of the
encodings of its K-relations enc(R®, @) in some predefined order.

Given n € N and a formula ¢ € L, one can recursively define the AC%(+, X, min)-circuit
that computes the value of ¢ in a D, , such that |D| = n, on the input enc(®D, ). In the trans-
formation of ¢ € Lx to a circuit, it suffices to transform subformulas of the forms 3x.¢ (7, x)
and Vx.¢(4, x) to expressions Y, ,cp @ (4, a/x) and mingep ¢ (i, a/x), respectively. After this, the
remaining construction of the circuit is to treat each subformula as a gate of the circuit labelled
with its top-most connective. Gates corresponding to atomic formulas are input gates and are
labelled with an appropriate part of the input enc(D, @) determined by the ordering used in it. The
argument that there is a DLOGTIME algorithm that describes C,, given n, is the same as in the
classical case for FO (see [8] for a similar proof for FOg and DLOGTIME-uniform AC?R(+, X)). O

B.3 Acyclicity of the attack graph and semiring rewriting of the consistent answers

LEmMA 4.13. Ifq is a sjifCQ with an acyclic attack graph and x is an unattacked variable, then q[x]
has an acyclic attack graph. Moreover, the attack graph of q[x] is a subgraph of the attack graph of q.

Proor. Notice that the attack graphs of ¢[x] and ¢ have the same atoms, hence they have the
same nodes. Consider an edge in the attack graph of g[x], that is, an edge between the nodes
corresponding to atoms R(#j; Z) and R’ (y’;2"). Thus, R(§j; Z) attacks a variable y; in var(y’) that is
bounded in g[x]. In particular, y/ is bounded in g, and both atoms R(j; Z) and R (y';z') are in q.
Since R(y; Z) attacks y/, there are witnesses xi, ..., Xp, = y; such that:

(1) x; € var(Z) (i.e., is a non-key variable of R), and x, = y};

(2) for all i < n we have that x;, x;1; occur together in some atom of g[x] (thus, they occur

together in some atom of ¢q); and

(3) For every i < n we have that x; ¢ {var(y) |5 (@lxI\R)* Notice that the set of key-constraints in

qlx] \ {R(¥;2)} and the set of key constraints in ¢ \ {R(¥;Z)} coincide .
We can conclude that R(3; Z) attacks y; in the attack graph of g as well, in other words, the edge
between R(§;Z) and R’ (y; 2') is also in the attack graph of g, therefore the attack graph of g[x] is
a subgraph of the attack graph of g. O
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LEmMMA 4.15. Let q be a sifCQ and X a set of key constraints, one per relation, with an acyclic attack
graph. Let a : Var — A be an assignment and x be an unattacked variable in q. Then, for every
K-database D,

mCAk(q D,@) = ) mCAx(qlx], D, a(c/x)).
ceD

Proor. Note that, by definition

CAk (¢, D, a) = i D, a) = i D, .
mCAg (g, D, a) m/ef{i;?@,mq( a) @/eﬁre‘;?b,z);’;,q[x]( a(c/x))

Hence, it suffices to establish that

min 3" q[x](D,ale/x) = ). min__q[x](D,a(c/x)).

D’eRep(D,X) ool o) D’eRep(D,2)
It is easy to see that

i D, > i D, )
el ) 2 AR, (c/0) 26 37 min, | lx](D, (/)

For the other direction, if mCAg (g, D, @) = 0, then the lemma holds. Suppose mCAg (g, D, &) > 0.
We need to show that

i ! < i ! . 11
o mn ZD qlx](¥, alc/x)) <x ;D'egﬁ?w qlx](D a(c/x)) (11)
For everyrepair R of D, set p(R) = {c € D | R, a(c/x) Fx q[x]} ando(R) = 3 .cr q[x] (R, a(c/x)).
Since mCAg (g, D, @) > 0, which is the minimum v(R) over the repairs R of D, we have that
o(R) > 0 for every R. Let m = mingerep(n,5) 9(R) = mCAg(q, D, ) and fix Ryin € Rep(D, %)
such that o(Rpin) = m. We will show the following claim:

Claim 3. Ifa € p(Rin) and R € Rep(D, %), then g[x](Rumin, a(a/x)) <s q[x] (R, a(a/x)).

ProoF oF Cramm 3. Let (Ry, Ry, ..., R,) be a topological ordering of the attack graph of q. For
simplicity, when we use a relation name R; in contexts where an atom is expected, we mean the
unique R;-atom of q. If R is a repair, and i € {0, 1,2,...,n}, then we write PreCopy(%R, i) for the
smallest subset of Rep(D, Z) that contains R’ whenever R and R’ have exactly the same R;-facts
forall j € {1,2,...,i}. Thus, PreCopy(R,0) = Rep(D, ), and PreCopy (R, n) = {R}. We introduce
some convenient terminology. An R,-block is a maximal set of R,-facts of Supp(D) that agree on
all key attributes. Clearly, for each ¢ € {1,2,...,n}, every repair selects exactly one fact from
each Ry-block. An embedding of q into R is an assignment that maps every atom of q to a fact in
Supp(R). If 6 is an embedding, then 6(R,) denotes the fact to which the atom R, is mapped (where
e {1,2,...,n}). Arepair R is called superfrugal [2] if no repair R’ has a set of embeddings that is
a strict subset of that of R. An embedding in a superfrugal repair is also called a Yembedding. If
is a Vembedding, then, for all i € {1,2,...,n}, the R;-block that contains S(R;) is called a VR;-block.
From [2, Lemma 4.5], it follows that for all i € {1,2,...,n}, we can select a fact from each block that
is not a VR;-block such that the selected facts do not belong to any embedding into the resulting
repair. Therefore, in what follows, it suffices to consider only VR;-blocks.

A repair R such that o(R) = m can be constructed as follows, for decreasing values of i =
nn—1,...,1:

e for i = n, select in each VR,-block the fact with the smallest annotated semiring value; and

e for i < n, in each VR;-block, select the fact that yields the smallest annotated semiring value,
given the already fixed R;-facts for j € {i + 1,i+2,..., n}. This selection is illustrated next
and, as we will argue shortly, is independent of the Ry-facts for ¢ < i.
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Example B.1. Consider the bag semiring. Assume that the last two facts of ¢, in the topological
order of the attack graph, are R,_;(v;y) and R, (y, z), where all attributes of R, are key attributes.
Assume that the only R,,-facts with positive support are R,? (b,dy) =1, R,? (b,ds) =1,and Rf (¢,dy) =
8. Furthermore, assume that Rnb_l(a, b) = 2 and R;‘?_l(a, ¢) = 1, two facts belonging to the same
VR,,_1-block. The former R,,_;-fact contributes (2 X 1) + (2 X 1) = 4, while the latter contributes
1 X 8 = 8. So our procedure will select R,_1(a, b), which, notably, is not the fact with the smallest
annotated semiring value in its block.

It can now be argued by induction on decreasing i = n,n—1,. .., 1 that every superfrugal repair R
containing the selected R;-facts for every j € {i,i + 1,...,n} minimizes the semiring value of g
across all repairs in PreCopy (R, i — 1). The reasoning is similar to that in Claim 2. Assume that in
some superfrugal repair R, we replace a fact B with C in some VR;-block B, such that the semiring
value of g decreases. Let R¢ be the repair satisfying Supp(Re) = (Supp(R) \ {B}) U {C}. There
will be an embedding f into R such that f(R;) = B, as well as an embedding y into R¢ such that
Y(R;) = C. Since B and C agree on their key, it follows that f and y agree on every variable in
V= {v evar(q) | (¢ \ {R;}) F key(R;) — v}. Define 9% as the assignment such that for every

variable v in var(q),

95(0) _ y(v) ifR; att.acks v;
f(v) otherwise.

Since x is unattacked in g, we have 95 (x) = B(x). Notably, 95 is an embedding into R because
if an atom Ry of q (where £ € {1,2,..., n}) contains both variables attacked and unattacked by R;,
then f3 and y agree on the unattacked variables, as they belong to V; consequently, 95 (Re) = y(Ry).

Furthermore, if £ # i and R, is not attacked by R;, then 95 (Re) = P(Ry), which, in particular,
holds for £ € {1,2,...,i — 1}. Note also that x occurs in at least one atom that is not attacked
by R;. Informally, we conclude that if B is replaced by C, then every embedding into R that used B
can be transformed into one that uses C instead, while remaining unchanged over all atoms not
attacked by R;. Consequently, the optimal (minimizing) choice from 8 is independent of atoms
not attacked by R;. In particular, regarding x, if f; and f, are distinct embeddings into R such
that B;(R;) = B2(R;) = B, then the optimal choice in 8 is the same for both f; and f;, even if
Pi1(x) # Pa(x). For example, the selection from the R,_;-block in Example B.1 does not require
knowledge of the R,-facts for £ < n — 1.

When i reaches 1, the superfrugal repair with the selected facts minimizes the semiring value of q
across all repairs of PreCopy (R, 0) = Rep(D, X). Moreover, our minimization procedure ensures
that for every a € D, the semiring value of g[x] with respect to a(a/x) is also minimized. This
concludes the proof of Claim 3. O

Equation (11) now follows from Claim 3, and this finishes the proof of the lemma. O
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